Mark schemes

Q1.

(a) Phytophthora

1

(b) the fungus can get oxygen from the air

ı

(c) the variety of species of organisms in the river

1

(d) pesticide washed into river

allow spray drift

allow reference to run-off

allow carried by rainfall

1

pesticide kills (some) organisms / plants / animals in river

1

(e)

	R	r
R	RR	Rr
r	Rr	rr

all 3 correct = 2 marks

2 correct = 1 mark

0 or 1 correct = **0** marks

2

(f) ring drawn around RR / rr in the diagram allow around both RR and rr

1

(g) 75%

percentage must match student's answer in the diagram

allow 75% if no answer to question (e)

1

(h) no fusion of gametes

or

(asexual reproduction involves) mitosis

allow no fertilisation

1

(so) offspring are genetically identical (to parent plant) allow offspring are a clone allow offspring have same DNA allow no mixing of genes / DNA allow no mixing of genetic material allow all offspring inherit **R**

[11]

Q2.

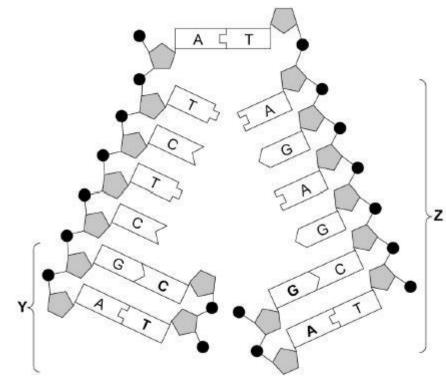
(a) chromosome(s) allow chromatid(s) / gene(s) / allele(s)

1

1

(b) sugar

allow deoxyribose allow pentose do **not** accept ribose


1

(c) base(s)

allow nitrogenous base(s) allow adenine **and** cytosine **and** guanine **and** thymine

1

(d)

all four required for the mark

1

(e) replication

				1	
	(f)	protein	allow polypeptide	1	
	(g)	3 × 10 ⁻¹² g	rams	1	
	(h)	meiosis		1	
					[8]
Q3	(a)	mutation m	neans less oxygen for (aerobic) respiration allow haemoglobin or red blood cell carries oxygen for (aerobic) respiration do not accept no oxygen for respiration	1	
	(b)	4 ÷ 17			
			allow 4:13	1	
		0.235(29) allow 0.24 or 24%		
			allow ratio 1 : 3.25	1	
	(c)	father / 8's	gametes correct: H ^A + H ^A	1	
		mother / 9'	s gametes correct: H ^A + H ^S allow 1 mark for both sets of gametes if parents not identified	1	
			rivation of offspring genotypes:		
			allow correctly derived offspring genotypes from incorrect parental gametes	1	
		correct phe	enotype for each derived genotype	1	
		0.25 / 1/4 / 2	25% / 1 in 4 / 1:3		
			allow only a probability consistent with student's derivations	1	
				1	
	(d)	any three f	from:		

points for:

- H^AH^S do not get malaria
- HAHS survive sickle cell anaemia

points against:

- H^AH^A may die from malaria
- HsHs may become (severely) ill with sickle cell anaemia
- Judgement:

if parents H^AH^S then some offspring survive both malaria and sickle cell anaemia

or

if parents H^AH^S then some offspring may become (severely) ill with malaria and some become (severely) ill with sickle cell anaemia

to gain full marks both point(s) for and point(s) against must be given

[11]

Q4.

(a) 4 / four

1

3

(b) 23 / twenty three

do not accept 23 pairs

1

(c) a different form of a gene

1

(d) heterozygous

1

(e)

	Dd/dD
dd	dd

allow 2 correct for 1 mark

2

(f) ring around any **Dd**

allow ecf from question (e)

1

(g) percentage must match answer given to questions (e) and (f)

if no answer in question (e) allow 50 %

1

(h) mutation / mutated

do **not** accept mutant

(i)	 to help them prepare to inform whether to consider having an abortion to find out if they have passed on the disorder allow to see if the child / embryo has the disorder allow answers referring to genetic disorders, or specific example such as Dupuytren's / cystic fibrosis 	1	
			[10]
Q5.			
(a)	any two from: • double allow two strands • helix allow twisted / spiral / coiled • long / thin	2	
(b)	bases		
		1	
(c)	protein	1	
(d)	nucleotide		
(e)	0.34 × 6 000	1	
	2040 (million nm)	1	
(f)	answer from question (e) correctly converted if no answer to question (e), allow 2.04 (m)	1	
(g)	 any one of: to determine if the cancer is genetic (or caused by lifestyle factors) to inform / help treatment to allow embryo screening to ensure allele is not passed on to inform relatives if they have inherited (affected) gene / allele to detect cancer early or before symptoms show to understand cause of the cancer 	1	

\cap	C
u	O.

l		
(a)	many (joined) nucleotides or monomers	
	allow (long) molecule / chain made of repeating units	
	repeating times	1
(b)	phosphate	
		1
	(phosphate attached to a) sugar	1
	(which has 1 of 4) base(s) (attached to sugar)	
	ignore phosphorus	
	allow deoxyribose / pentose	
	allow 2 marks if position of sugar / phosphate / base is incorrect	
		1
	(bases) are A, C, G and T	
	allow bases are adenine, cytosine,	
	guanine and thymine do not accept thiamine / adenosine	
	allow description of a pair of nucleotides	
		1
(c)	0.34 × 12 000 000 000	
	an incorrect answer for one step does not prevent allocation of marks for	
	subsequent steps	1
	4 000 000 000	
	4 080 000 000	1
	4 080 000 000	
	1 000 000 000	
	allow conversion from nm to m at any	
	point in the calculation	
		1
	4.08 (m)	
		1
	2.04 (m)	
	(divided by 2 due to base pairs) allow division by 2 at any point in the	
	calculation	
		1
(d)	(non-coding parts) can switch genes on / off	
		1
		[11]

Q7.

- (a) any three from:
 - mitosis produces two (daughter) cells but meiosis produces four (daughter) cells

answers must be comparative

- one cell division in mitosis but two cell divisions in meiosis
- mitosis produces cells with two of each chromosome, but meiosis produces cells with one of each chromosome

allow mitosis produces diploid cells but meiosis produces haploid cells allow mitosis maintains the number of chromosomes **or** mass of DNA **or** mass of genetic material but meiosis halves the number / mass allow mitosis produces cells with 23 pairs **or** 46 chromosomes but meiosis produces cells with 23 chromosomes

 mitosis produces genetically identical cells, but meiosis produced genetically different cells

> allow other correct differences between the processes of mitosis and meiosis

(b) any **one** from:

DNA doubles / copies / replicates (once)

allow chromosomes **or** genetic material **or** genetic information double / replicate / are copied

 increase in the number of mitochondria / ribosomes / sub-cellular structures

> ignore mitochondria / ribosomes are copied / duplicated allow chromosomes / chromatids pulled to side (of cell) allow other correct similarities between the processes of mitosis and meiosis

(c) Dd/dD

allow heterozygous

has **D** because has Dupuytren's **and** has **d** because child / person 6 is homozygous recessive **or** does not have Dupuytren's **or** is **dd**

allow has **D** because has Dupuytren's **and** person 1 and person 2 both passed **d** to child / person 6 allow has **D** because has Dupuytren's **and** cannot be homozygous / **DD** or all the children would have Dupuytren's

3

1

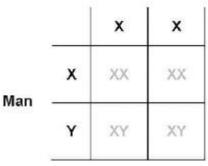
Page 8 of 25

		1	
(d)	male / person 7 gametes correct: D and d	1	
	female / person 8 gametes correct: d and d		
	allow 1 mark for both sets of gametes correct if parents not identified		
	correct in parerice necraonanea	1	
	correct derivation of offspring genotypes:		
	Dd Dd dd dd		
	allow correct derivation of offspring		
	genotypes from incorrect gametes		
		1	
	offspring with Dupuytren's identified		
	allow correct for genotypes stated in		
	тр3	1	
		•	
	probability correct from the correct identification given		
	allow probability correct from offspring		
	genotypes if identification not given	1	
()	() () () () () () () () ()		
(e)	female(s) / person(s) 3 / 11 / 12 have Dupuytren's		
	allow some females have Dupuytren's	1	
	females don't have Y chromosome or		
	Dupuytren's is passed from fathers / 1 / 7 to daughters / 3 / 12, (so is		
	not on the Y chromosome)		
	allow only males have Y chromosomes		
	allow females are XX allow Dupuytren's is passed from		
	mothers / 11 to children / 15, (so is not		
	on the Y chromosome)		
		1	[12]
			[13]
00			
Q8.			
(a)	an allele expressed even if a person only has one copy of the allele	1	
(b)			

Woman e e E Ee Ee Man e ee ee

all 3 correct = 2 marks 1 or 2 correct = 1 mark

(c) correct probability from Figure 1


if no answer in part (b) allow 0.5

1

2

(d)

Woman

gametes = X + X and X + Y allow in incorrect positions

X, X, X and Y in correct boxes

1

(e)

an answer matching the answer from part $(c) \times 0.5$ scores **2** marks if no answer in part (c), an answer of $0.25 / \frac{1}{4} / 1$ in 4 / 25% scores **2** marks

answer from part (c) \times 0.5

if no answer in part (c) allow 0.5×0.5

1

answer to calculation in mp 1

if no answer in part **(c)** allow 0.25 / 1/4 / 1 in 4 / 25%

[8]

1

Q9.

(a) 46

			1
(b)	half the ma	ass of the DNA in cell A	1
(c)	meiosis		1
(d)	mutation		1
(e)	geneeach	om: erent egg / sperm each time es from two parents n gamete / egg / sperm has different alleles / genes / DNA / etic information ignore different chromosomes ignore the children have different genes / alleles	2
(f)	8		1
(g)	40	allow in range 39 to 41	1
(I-)		allow in range 35 to 41	1
(h)	40 500	an answer of 80 scores 3 marks allow ecf from part (g) for 3 marks an answer of 0.08 scores 2 marks allow answer to part (g) 500	1
	× 1000		
	80	an answer from mp1 but not × 1000	1
		scores 2 marks	1
(i)	embryo is	(very) small	1
	(so) embry	yo not seen / felt	
	lost in nor	mal menstrual flow ignore not noticed	1
			[13]

1

Q10. (a)	chromosome(s) allow gene(s) / allele(s)	1	
(b)	X = sugar	1	
	Y = nucleotide	1	
	Z = base	1	
(c)	double helix	1	
(d)	3	1	
(e)	 any two from: allow descriptions or named examples diagnosis of inherited / genetic disorder allow research / understand genetic disorders gene therapy or treatment of inherited disorders understanding (human) evolution or understanding ethnic origins (of a person) or understanding ancestry tracing human migration patterns allow other examples – eg identification of criminals (1) paternity determination (1) 	2	[8]
Q11. (a)	same kingdom + phylum + class + order or same order or they have the top four groups the same allow both Poales	1	

(b) Rr/rR

do **not** accept **RR** or **rr** ignore heterozygous do **not** accept homozygous

 C_MC_M (c) 1

(d) allow **R** and **W** throughout allow own symbols if defined

parental genotypes / gametes correct for both parents: CR CW CR CW / CR and CW 1 genotypes of offspring correctly derived in a Punnett square: CRCR **C**R**C**W C_MC_M allow correctly derived genotypes from incorrect gametes 1 correct identification of phenotypes from their cross: $C^RC^R = red$ $C^RC^W = pink$ $C^wC^w = white$ allow colours correctly identified from different offspring, only if pink and other colour(s) are given 1 (e) answer correctly derived from part (d) to match stated phenotypes allow 50(%) if no offspring given in part (d) allow to match genotypes if no phenotypes given 1 (f) (several groups) so many / several plants can be produced allow each (group) will give a new plant 1 (nutrients) for making protein / amino acids or for making chlorophyll or for providing energy or for respiration allow other examples do **not** accept making energy ignore for growth 1 (add hormones) so differentiation occurs or so roots / shoots develop allow for the formation of different tissues / organs / named allow to stimulate cell division (sterile conditions) to prevent growth / entry of microorganisms / named type or prevent decay / disease ignore to kill microorganisms ignore contamination unqualified 1

```
(temperature = 20 °C)
          so optimum / good growth
                     allow reference to enzymes working
                     well
                     ignore enzymes not denatured
                     ignore reference to pathogens /
                     microorganisms
                                                                                    1
         (all new plants have been) produced by asexual
    (g)
          reproduction / mitosis or produced without (fusion
          of) gametes
                     ignore produced from one parent
                                                                                    1
          (so) all are genetically identical / clones or all are
          CRCW / heterozygous
                     allow all are the same genotype / alleles
                     / genes / DNA
                                                                                       [14]
Q12.
    (a)
         nucleus
                                                                                    1
    (b)
         gene(s)
                     allow allele(s)
                                                                                    1
    (c)
         copying of chromosomes
                                                                                    1
    (d)
         mitochondria
    (e)
         60 - 45
          120 - 105
                                                                                    1
          15 (minutes)
                                                                                    1
                     an answer of 15 (minutes) scores 2 marks
    (f)
         C
                                                                                    1
    (g)
         8
                                                                                    1
    (h)
         to repair tissues
                                                                                        [9]
```

Q13.

(a) Gregor Mendel

1

(b) DNA

1

(c) when the dominant allele is not present

1

(d) tt

allow homozygous recessive

1

(e)

7d 25	Т	ŧ
Т	$\; \exists \;$	Tt
t	Tt	tt

all 3 correct = **2** marks 2 correct = **1** mark 0 or 1 correct = **0** marks allow tT for Tt

2

(f) circle drawn around either TT or tt on Figure 2

allow circles drawn round both

1

(g) correct ratio from part **(e)** e.g. 3 : 1

allow multiples of stated ratio
allow 3 : 1 if no answer to part **(e)**

[8]

Q14.

(a)

	state	statement is true for		
	mitosis only	meiosis only	both mitosis and meiosis	
all cells produced are genetically identical	√			

in humans, at the end of cell division each cell contains 23 chromosomes	✓	
involves DNA replication		✓

3 correct = 2 marks 2 correct = 1 mark 0 or 1 correct = 0 marks

2

(b) any **two** from:

ignore references to one parent only

- many offspring produced
- takes less time

allow asexual is faster

- (more) energy efficient
- genetically identical offspring allow offspring are clones
- successful traits propagated / maintained / passed on (due to offspring being genetically identical)
- no transfer of gametes or seed dispersal allow no vulnerable embryo stage allow no need for animals
- not wasteful of flowers / pollen / seeds
- colonisation of local area

must imply local area

2

1

(c) genetic variation (in offspring)

(so) better adapted survive

allow reference to natural selection or survival of the fittest

1

(and) colonise new areas by seed dispersal

OI

can escape adverse event in original area (by living in new area)

must imply new area

1

many offspring so higher probability some will survive

1

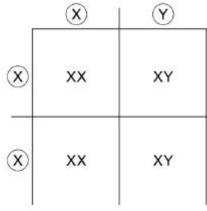
allow bluebell example described (max 3 if not bluebell)

[8]

Q15.		
(a)	3.7	1
(b)	2	1
(c)	(different combinations of alleles cause) many / 22 values allow continuous variation	
	or in-between values or	
	large range of values or	
	there are not only two values	
	allow there are not only 3 values if 3 is given in part (b)	1
(d)	different protein made	
,	allow change in shape (of enzyme) or change in 3-D structure	
	ignore denature	1
	active site changed	1
	so substrate does not fit / bind	
	allow description of substrate allow cannot form E-S complex	
	ignore lock and key description	1
(e)	produces (some) offspring with high-fat milk or	
	not all offspring have low-fat milk	
	ignore reference to alleles	1
(f)	takes less time (to obtain results) or	
	more offspring at the same time	
	allow other sensible suggestion – e.g. allows screening or allow cow 7 to	
	continue to produce eggs o r avoid injury to cow 7 during mating or giving birth	1
(g)	male gametes correct: d (and d)	-
νο,		1
	female gametes correct: D and d	1

			allow 1 mark if gametes are correct but gender not identified		
		correct der	ivation of offspring genotypes from given gametes allow 2 x 2 or 2 x 1 derivation	1	
		Dd identifie	ed as low-fat and dd identified as high-fat in offspring if DD offspring are produced, must also identify as low-fat	1	
	(h)	find female	with low(est) fat in milk and high(est) milk yield allow choose from 7, 9, 12, 13 which has the highest yield	1	
		find male w low(est) fat	whose female offspring have high(est) milk yield and t in milk		
		,	allow choose from 16 or 18 whose female offspring has the highest yield	1	
		or			
		find female or cow 13	with lowest fat in milk (1)* * or allow female with high(est) milk yield		
		find male w	whose female offspring have high(est) milk yield (1)* *or allow male whose female offspring have lowest fat in milk / male 16		
		cross the b	pest (for both features) female with the best male	1	
			offspring (for both features) from each generation and several generations	1	[16]
Q1	6.				
	(a)	46		1	
	(b)	23	allow ecf from 2.1 – ie half of answer given in 2.1	1	
	(c)	egg		1	

sperm


ovary

meiosis

fertilisation

1

correct order only correct spelling only

(d)

all 4 correct = 2 marks

2 or 3 correct = 1 mark

0 or 1 correct = 0 marks

ignore correct / incorrect identification of male and female offspring

2

(e) 1 in 2

1

- (f) any **two** from:
 - multiple genes determine appearance
 allow several / many genes determine appearance
 - different combinations of alleles
 allow description of combinations of alleles' allow
 genes for alleles
 - different environmental effects
 allow example e.g. eat different diets
 - from different egg / sperm

[12]

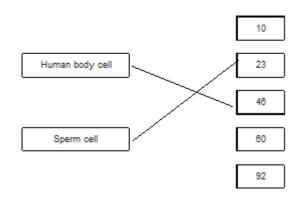
2

1

Q17.		
(a)	red blood cell	1
(b)	44	1
(c)	retina	1
(d)	7 and 8 / the parents do not have A (allele) or only have a (allele) or are aa allow converse – if parents had an A (allele) they would have Stickler syndrome so children cannot inherit A or can only inherit a	1
	or	
	the parents show the recessive characteristic	
	so must be homozygous (recessive) or must be aa or parents cannot have A	1
(e)	parental genotypes: 12 = Aa and 18 = aa or parental gametes: 12 = A + a and 18 = a + a	1
	derivation of offspring genotypes allow ecf	
	identification of Aa offspring as Stickler	1
	probability = 0.25 / 4 / 1 in 4 / 25% / 1:3 allow ecf – e.g. 0.5 if 12 = AA do not accept 3:1 do not accept 1:4	1 [9]
040		
Q18. (a)	A	

2

1


1

3

1

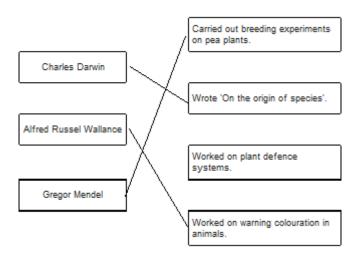
1

(b)

(c) one x circled under mother

accept if clearly indicated choice even if not circled

(d) XY


allow YX

(e) 50 (%)

[6]

Q19.

(a)

(b) a gene

allow allele

(c) 4

(d) correct derivation of children's genotypes

		1	
	identification of children with cystic fibrosis (dd)	1	
	0.25 allow ecf allow ½ / 25% / 1 in 4 / 1:3	1	
	do not accept 1:4		
(e)	heterozygous	1	[9]
Q20.			
(a)	phosphate allow PO ₄ ³⁻	1	
	do not allow P		
(b)	A / adenine and T / thymine and C / cytosine and G / guanine		
	do not allow U / uracil	1	
(c)			
	or there is a change in the three bases / triplet from CAG to TAG	1	
	(mutation) changes the amino acid	1	
	(this could) change the protein	1	
	(so it) forms a different shape / changed active site		
	accept different tertiary structure	1	
	(therefore) the enzyme no longer fits the substrate / carbohydrate	1	
(d)	mother / woman's gametes correct: A a	1	
	father / man's gametes correct: a a	1	
	correct derivation of offspring		
	ecf	1	

identification of child with syndrome H or genotype aa

1

1

0.5

ecf

allow 50% / 1 / 2 / 1 in 2 / 1:1

do not accept 1:2

[12]

Q21.

(a) When the dominant allele is not present.

1

(b) (i) Bb

1

		Woman Brown hair		
		В	b	
Person 3	b		bb	
Red hair	b	Bb	bb	

(ii)

3 correct = 2 marks 2 correct = 1 mark 1 or 0 correct = 0 marks allow bB for Bb

2

1

(iii) 1 in 2

allow ecf from part ii

[5]

Q22.

(a) testis / testes

allow testicle(s)

1

(b) (i) $\mathbf{B} = 13.2$ $\mathbf{C} = 6.6$

E = 3.3

all 3 correct = 2 marks

2 or 1 correct = 1 mark

		If no marks awarded allow ecf for C and E based on answer to B		
		ie $C = \frac{1}{2}B$ and $E = \frac{1}{2}C$ for one mark	2	
	/ii\	6.6		
	(11)	allow twice answer for cell E in part bi	1	
	/iii\	mitorio	•	
	(111)			
			1	
(c)	(i)	any two from:		
		 can become other types of cells / tissues or become 		
		·		
		anow puripotent	2	
	(ii)	4-day embryo is a (potential) human life		
		or		
		destroying/damaging (potential) human life		
		allow cord would have been discarded anyway		
		ignore reference to miscarriage		
		allow cannot give consent	1	
	(iii)	perfect tissue match or hard to find suitable donors		
	()	·		
		allow no danger of rejection		
		allow no need to take immunosuppressant drugs (for life)		
		ignore genetically identical or same DNA	1	
	(iv)	stem cells have same faulty gene / allele / DNA / chromosomes		
	(17)			
		ignore cells have the same genetic disorder		
			1	[10]
				ניטן
3.				
(a)	(i)	man has (inherited) polydactyly (PD) allele (from mother)		
			1	
		man has (inherited) other / normal / recessive allele from father	1	
	3.	(ii) (iv)	on answer to B ie C = ½ B and E = ½ C for one mark (ii) 6.6 allow twice answer for cell E in part bi (iii) mitosis correct spelling only (c) (i) any two from: • cells that are able to divide • undifferentiated cells / not specialised • can become other types of cells / tissues or become specialised /differentiated allow pluripotent (ii) 4-day embryo is a (potential) human life or destroying/damaging (potential) human life allow cord would have been discarded anyway ignore reference to miscarriage allow cannot give consent (iii) perfect tissue match or hard to find suitable donors allow same/matching antigens allow no danger of rejection allow no need to take immunosuppressant drugs (for life) ignore genetically identical or same DNA (iv) stem cells have same faulty gene / allele / DNA / chromosomes allow genetically identical ignore cells have the same genetic disorder	on answer to B ie C = ½ B and E = ½ C for one mark 2 (ii) 6.6 allow twice answer for cell E in part bi (iii) mitosis correct spelling only 1 (c) (i) any two from: • cells that are able to divide • undifferentiated cells / not specialised • can become other types of cells / tissues or become specialised / differentiated allow pluripotent 2 (ii) 4-day embryo is a (potential) human life or destroying/damaging (potential) human life allow cord would have been discarded anyway ignore reference to miscarriage allow cannot give consent 1 (iii) perfect tissue match or hard to find suitable donors allow same/matching antigens allow no need to take immunosuppressant drugs (for life) ignore genetically identical or same DNA 1 (iv) stem cells have same faulty gene / allele / DNA / chromosomes allow genetically identical ignore cells have the same genetic disorder 1 3. (a) (i) man has (inherited) polydactyly (PD) allele (from mother) man has (inherited) other / normal / recessive allele from father

	would have had PD or father only has normal allele or father is homozygous recessive	1	
	allow gene for allele	•	
	(ii) 0.5 / ½ / 1 in 2 / 1:1 / 50% do not allow 1:2 or 50/50 allow 50:50	1	
(b)	parental phenotypes: both brown		
	parental genotypes: both Bb	1	
	parental genotypes. Both bb	1	
	gametes: B b and B b	1	
	allow only on gametes answer line allow ecf from genotypes		
	offspring genotypes: BB (2)Bb bb allow ecf from gametes	1	
	offspring phenotypes correctly assigned to genotypes: BB & Bb = brown bb = red	-	
	do not penalise confusion of 'phenotypes' & 'genotypes' here		
		1 	[9]